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LOCALLY MASS-CONSERVING TAYLOR-HOOD 
ELEMENTS FOR TWO- AND THREE-DIMENSIONAL 

FLOW 

R. W. THATCHER 
Depurtment of Mathematics, U M I S T ,  PO Box 88, Manchester M60 IQD, U . K .  

SUMMARY 

By supplementing the pressure space for Taylor-Hood elements, elements that satisfy continuity locally are 
produced. These elements are shown to satisfy the Babuska-Brezzi compatibility condition by using the 
patch argument. 

Two examples are presented, one illustrating the convergence rates and the other illustrating a difficulty 
with a Taylor-Hood element that is overcome by the element presented here. 
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1. INTRODUCTION 

A popular triangular element for solving fluid flow problems was introduced by Hood and 
Taylor.’ It is a quadratic velocity, linear pressure element providing continuous approximations 
to both velocity and pressure and is often referred to as the P 2 / P ,  element for fluid flow. More 
recently the quadrilateral and hexahedral elements Q 2 / Q 1  have also been referred to as 
Taylor-Hood elements. These are biquadratic (or triquadratic) velocity and bilinear (or trilinear) 
pressure on the standard element providing continuous approximations for velocity and pressure. 
Indeed, Pk/Pk- ,  triangular and Q k / Q k -  quadrilateral and hexahedral elements are all often 
referred to as Taylor-Hood elements for all k 2 2 .  In this paper we shall only consider the case 
k = 2 ,  but the remarks apply for all k 2 2 ;  the analysis, however, becomes somewhat lengthy 
for k > 2. 

It has been known for some time that one of the drawbacks in using continuous pressure 
elements is that continuity or mass conservation is only obtained over the whole region and not 
over individual elements. This has been noted in at least three  paper^,^-^ each group of authors 
putting down the poor results to lack of mass conservation at the element level and then moving 
over to some form of discontinuous pressure solution to provide mass conservation within the 
element. The elements adopted each provided much improved solutions, although the improve- 
ment was not necessarily the result of element mass balance. Tidd et aL4 supplemented the P , / P ,  
with piecewise constant pressures, the subject of the analysis here, which was an idea for triangular 
elements first suggested by Griffiths.’ Gresho et a/.’ supplemented the Q2/Q1 element with 
piecewise constants, but although this gave a significant improvement, they preferred the Q 2 / P l  
element (fully discontinuous linear pressures in a quadrilateral element). 

The subject of this paper is the analysis of supplementing Taylor-Hood elements with piecewise 
constant pressures using the patch argument introduced by Boland and Nicolaides,6 but 

027 1-209 1/90/11034 1 - 13$06.50 
0 1990 by John Wiley & Sons, Ltd. 

Received September 1989 



342 R .  W. THATCHER 

considerably extended and simplified by Stenberg' using the ideas of Verfiirth' on mesh- 
dependent norms. 

2. THE STOKES EQUATIONS AND THE MACROELEMENT TECHNIQUE 

In this section we shall reproduce the notation and main theoretical results contained in 
Stenberg.' The weak form of the Stokes equations in a region R c R d ,  d = 2  or 3, is to find 
ueHA(R)d and p ~ L g ( f 2 )  such that 

v(Vu, Vu) - (div u, p )  = ( J  u), 

(div u, q)  = 0 (1) 

for every u E HA(R)d and q E Li(R), where (,) and Li(LR), Hh(R) are the usual inner product and 
function spaces. The mixed finite element method is to choose finite element spaces Vh and Ph and 
find uh E v), C HA(R) and P h  E Ph C Li(R) such that 

for every u E V,, and q E Ph, where h is the usual finite element parameter. The spaces Vh and P, 
cannot be chosen arbitrarily, but if the Babuska-Brezzi condition 

holds, then the following theorem is proved (see e.g. Reference 9). 

Theorem 1 

If vh and Ph satisfy (3), then (2) has a unique solution (uh ,  P,) satisfying 

I1 u - u h  I1 + I1 P - P h  / lo I C inf I1 u - u I1 + inf I1 P - 4 /lo , (4) 
{O."h 4 E P h  1 

where (u, p )  is the solution of (1). Moreover, if /? in (3) is independent of h, so is C in (4). 

The first breakthrough to simplify the proof of ( 3 )  for particular spaces Vh and P,  was given by 
Boland and Nicolaides.6 Stenberg" independently found B similar result, but here we are using 
the modified theory of Stenberg.' 

A finite element partitioning of is denoted by C,, all the elements of which are assumed to be 
triangles or convex quadrilaterals in R 2 ,  or tetrahedra or convex hexahedra in R 3 .  The 
partitioning is assumed to satisfy the usual regularity conditions' ' but is not assumed to be quasi- 
uniform. The reference element is denoted by k and the standard mapping from k to K is denoted 

A macroelement M is defined as a connected set of elements, and two macroelements M and 
are said to be equivalent if they can be mapped continuously onto each other; see Reference 7 for 
more details of this. Over C h  there is a velocity interpolation space t h  and a pressure interpolation 
space ph with all velocity and pressure nodal values unconstrained and from which we obtain 

by Fk. 

V h =  th n (HA(R)d, 

Ph=ph n Li(R). 
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Over the macroelement M we define two spaces VO,M and P,  by: 

(i) Let v " ~  v,, with v"= 0 at every velocity node on 6 M  and outside M and let v be the restriction 
of 6 to M ;  then 

Vo,,={set of all such u}. 

(ii) Let p E P h  with all p = O  at every pressure node outside M and let p be the restriction of p' to 
M ;  then 

P,= {set of all such p } .  

Further we denote 

N ,  = { p  E P,  such that (div u, p ) ,  = O  for every v E V,,,}. ( 5 )  

Finally we denote by rh the collection of edges (d = 2) or faces (d = 3) of the elements of c,, in the 
interior of a. Stenberg7 proved the following theorem. 

Theorem 2 

Suppose that there exists a fixed set of equivalence classes Ei, i = 1 ,2 , .  . . , q, of macroelements, a 

( M l )  For each M e E i  the space N ,  consists of functions that are constant on M for 

(M2) Each M E  M, belongs to  one of the classes E i ,  i =  1 ,  2, . . . , q. 
(M3) Each K E c,, is contained in at least one and not more than L macroelements of M h .  
(M4) Each interior edge (d = 2) or face (d  = 3 )  belonging to rh is contained in at least one and not 

Then the stability inequality (3) is valid. ( p  will be independent of h provided q and L are 
independent of h.) 

We shall now apply this result to various Taylor-Hood elements in which the continuous 
pressure space has been supplemented by piecewise constants. 

positive integer L and a macroelement partitioning M h  such that: 

i = l ,  2 , .  . . , q. 

more than L macroelements of M , .  

Regular grids of rectangular elements 

y-axes. In this case 
In this subsection we shall assume that C ,  is a regular grid with grid lines parallel to the x- and 

Vh = (UE(kf1(a))21 U i E Q 2 ( K ) v K E C h ,  for i =  1, 2}, 

p h  = {P E Lg(a) I P = Po PI,  P I  EC(Q), (PI  E Q I ( K )  and P o E Q o ( K )  v K E ch}. 

A typical patch is illustrated in Figure 1, and without loss of generality we have taken the origin 
of the axes to be at the pressure node P,. Over this patch a V E  V O , ,  is defined by 

( 6 4  

(6b) 

x(x + Y)Y(Y - 0 

x(x - W Y ( Y  - 0 

(x + k/2)(x + 4Y(Y - O V j  in K , ,  

' f X  - k/2)(x - k)Y(Y - 1) v, in K2. 

( + k2 1 2 /  16) + (-k212/8) 
v =  

(+k212/16) "+ (-k2Z2/8) v =  
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i' 
p2 p 6  

x "1 x 
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!-k,o) ( 0 9 0 )  (k90) 

Figure 1. A macroelement of two quadrilateral elements 

Similarly, a PEP, is defined by 

= B + R ,  in K , ,  

p = B + R ,  in K , ,  

where jj is the usual Q ,  Taylor-Hood pressure approximation. 

from V 0 , ,  and find the constraints on {PI, P,, , , . , P,, R , ,  R , }  such that 
Following the method of proof of Stenberg, we shall successively consider particular velocities u, 

(div u,, p ) ,  = 0. (7) 

Initially we shall consider velocities that have zero normal components around both a K ,  and aK, .  
In this case 

We first consider u, given by (6a) and (6b) with both g, = O  and g, =O. From (7) and (8), noting that 
the integral of (8) is a bicubic polynomial and is integrated exactly by the product Simpson's rule, 
then 

VB=O at 1. (9) 

Similarly, choosing u, such that g, = O  and g, =O, we obtain 

Vp=O at 2. 

If we now take u, as the tangential velocity at node 3, i.e. g, =0, g, = 0 and (03)1= 0, then we obtain 

ap /ay=o at 3. (1 1) 
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The conditions (9H11) tell us that (7) is satisfied for every u E Vo, ,,,, only if p is a constant, P, say, 
throughout M ;  that is, only if 

p = P , + R ,  in K , ,  

p = P ,  + R ,  in K , .  

We now choose u, equal to the normal velocity at  3. The condition (7) gives 

21 
3 0 = (div u,, p),,,, = (div u,, Pc),,,, + (div u,, R,) , ,  + (div u,, R,),, = =- ( R ,  - R 2 ) .  

Thus R ,  = R ,  and N,,,, for this patch consists of constant functions. By a similar argument, patches 
of two elements in the y-direction also have N,,,, consisting only of constant functions. It is now 
possible to meet all the conditions of Theorem 2 with q = 2, and in order to have every interior edge 
in exactly one macroelement, each element will be in not more than four macroelements. Thus we 
conclude that the Q2/Q1 Taylor-Hood element on regular grids with the pressure space 
supplemented by the piecewise constants over the elements satisfies the Babuska-Brezzi com- 
patibility condition. 

Regular grids of hexahedral elements 

In this subsection we shall assume that ch is a regular grid with grid lines parallel to the x- ,  y- 
and z-axes. The definitions of the velocity space vh and the pressure space Ph are essentially the 
same as the two-dimensional case, but the velocity now has three components. A simple count of 
velocity nodes and pressure nodes shows that a patch or macroelement of two elements will not 
have a null space N,,,, consisting only of constant functions. This case is complicated by the fact 
that not only do we have to consider a three-dimensional element but also we have to consider a 
macroelement of four elements, illustrated in Figure 2. The method of proof will be similar to that 
of the previous section in that we shall consider particular u, from Vo, and find constraints on 
PEP,,,,  such that (7) is satisfied. The pressure space P,,,, depends on the 22 parameters 

where Pi is the pressure at the ith vertex (see Figure 2) and R ,  is the constant pressure in the ith 
element K,. We note that { P , ,  . . . , P , , }  is the ‘Taylor-Hood’ pressure and we can write a typical 
PEP,,,,  as 

p = b + R ,  in Ki, 

where p is the continuous, piecewise bilinear Taylor-Hood pressure. Again we begin by 
considering u, that have zero normal components around the edges of all four elements in the 
macroelement such that equation (8) is satisfied. 

We first choose ut such that its only non-zero nodal parameter is the y-component at the 
midpoint of the line ($4) from node 5 to 4. After a certain amount of manipulation, 

4km 
27 (div u,, p),,,, = __ (PS - P l J  = 0, 

from which we conclude that 
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Figure 2. A macroelement of four hexahedral elements 

We now choose u, such that its only non-zero nodal parameter is the y-component at the midpoint 
of the face (4, 13, 14, 5); then 

(14) 
2 km 
27 (div u,, P ) ~  = ~ (P4 + P ,  - P i 3  - P14) = 0. 

Similarly, taking u, such that its only non zero-nodal parameter is the z-component at the 
midpoint of the face (4, 13, 14, 5) ,  then 

(15) 
2kl 
27 

(div u,,  p )  = - ( P 4  + P i 3  - P ,  - P i , )  = 0. 

From equations (13H15) we conclude that 

P , ,  = P ,  = P,. 

We now consider each of the other three inner faces in turn and let u, be velocities tangential to 
these planes. We conclude that if P E  P ,  and (7)  is satisfied for every U E  V , , M ,  then 

(16) P ,  = P ,  = P ,  = P ,  = P ,  = P , ,  = P , ,  = P , ,  = P , ,  = P , ,  = P,.  
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To continue, we choose u, such that its only non-zero nodal component is the x-component at the 
centroid of (1, 4, 13, 10, 2, 5, 14, 1 I) ,  i.e. element K , .  Thus 

(17) 
21m 
27 

(div u,, p ) ,  = - ( P ,  + P ,  + P , ,  + P , ,  - P,- P ,  - P 1 2  - P13)=0 .  

Choosing u, such that its only non-zero nodal component is the y-component at the centroid of 
K , ,  we obtain 

(18)  
2km 
27 (div u,, p ) ,  =--(P1 + P ,  + P ,  + P ,  - P , ,  - P , ,  - P i 3  - P,,)=O. 

Equations (16H18) give us 
P ,  = P , ,  = P , .  

Progressing through the elements, we obtain the result that 

P , = P ,  for i = l ,  2 , .  . . , 18, 

p = P , +  R j  in K j  for i = l ,  2, 3, 4. (19) 
Finally we choose u,  such that its only non-zero nodal parameter is the normal component at the 
centroid of the plane (4, 13, 14, 5) (i.e. the x-component), and using (19) we obtain 

16 lm 
__ ( R ,  - R , )  = 0, i.e. R ,  = R , .  9 

Choosing u, such that its only non-zero nodal parameter is the normal component at the centroid 
of the other inner faces, we conclude that 

R ,  = R 2 =  R 3 = R 4 .  (20) 
Thus (19) and (20)  give us the required result that N ,  for this macroelement consists of constant 
functions only. 

If we consider this macroelement as a ‘(2 x 1 x 2)’ macroelement, then a similar argument will 
apply for ‘(2 x 2 x 1)’ and ‘(1 x 2 x 2)’ macroelements. Thus any grid made up of these three 
macroelements will satisfy Theorem 2 and hence the Babuska-Brezzi compatibility result. We 
note that in the course of this proof we have also established that the Q2/Q1 Taylor-Hood 
hexahedral element on regular grids also satisfies (3). 

Irregular grids of Q2/Q1 elements 

Spurious pressure modes invariably show up on regular grids and often are not present on 
irregular grids, but for completeness the Babuska-Brezzi condition (3) should be established for all 
grids. 

In two dimensions the Taylor-Hood element on irregular grids is shown to satisfy (3) by 
Stenberg.’ This proof, with minor modifications, establishes that N ,  for two-element macro- 
elements consists of constant pressures. The modification required to Stenberg’s proof is that care 
is required on the inner side. Stenberg arbitrarily chose u, such that its only non-zero nodal 
parameter was one of the components at the centre of the side. For the augmented Taylor-Hood 
element it is necessary to first choose u, such that it is along the side and then choose u, such that it 
is normal to the side. 

In three dimensions the situation is much more complicated. The argument in the above 
subsection does not seem to generalise in a simple way. The main reason for this is that the edges of 
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a general quadrilateral are straight lines but the faces of a general hexahedron are not flat planes. 
In all tests carried out, blocks of four distorted Q 2 / Q l  elements have an NM that consists of 
constant functions, but this does not establish the required result. It seems then that it is still an 
open question whether the Q2/Q1 Taylor-Hood or augmented Taylor-Hood element on irregular 
grids in R 3  satisfies the condition (3). 

The P , I P ,  triangular element 

The P , / P ,  triangular element remains a popular element for two-dimensional flow. The 
pressure space for this element can be augmented by piecewise constants to produce an element 
that is mass-conserving over each element of the grid. The velocity and pressure spaces are 

Vh= { u  E (H' (Q))' I ui E P, (K)  v K E ch, i =  1, 2}, 

P h = { P E L g ( n )  I P = P O  + P1, P1 Ec(Q), PI EP1 ( K )  and POEPO(K)VK E C h } .  

To prove that this element satisfies (3), we shall first consider the two-element patch 
illustrated in Figure 3. We choose U , E  V o , ~  and find the constraints on p such that (div u,, p ) f i  =O. 
The space P ,  is defined by 

p = PI L ,  + P ,  L ,  + P ,  L ,  + R ,  in K 

p = P 3 L 1 + P 4 L 2 + P 2 L 3 + R 2  inK,. 

The space Vo, 
the inner side of M. Choosing u, parallel to this side, we obtain 

is only two-dimensional as determined by the two components at the midside of 

( P ,  - P,)  = 0, i.e. P ,  = P ,  = P , .  (div u,,  p ) ~  = ___ 

Choosing u, normal to the inner side and using (21), we obtain 

(21) 
h l  + h ,  

6 

(div u,, p ) ~  = + ICP, - P I  + 4 ( R 2  - R l ) 1 / 6 .  (22)  

0 '- / \ K2 / '. 

Figure 3. The two-element patch fi of triangles 
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Figure 4. A macroelement of triangular elements 

The two-element patch illustrated in Figure 3 is not a suitable macroelement, but that illustrated 
in Figure 4 is. In Figure 4 we have N elements each with two sides in common with other elements 
of the patch, and they all share a common internal node. By considering u, parallel to the side 
(0, A), with the only non-zero nodal parameter at  the midpoint of that side, we obtain, using (21), 

P o  = P I  = P , .  

Repeating this argument for each of the N sides, then 

P o = P , = P * =  . . .  = P N = P c .  (23 )  

Now taking u, normal to the side (0, A), with the only non-zero parameters at the midpoint of that 
side, we obtain, using (22 )  and (23) ,  

R ,  = R,. 

Repeating this argument for each of the N sides, we find that N ,  for this macroelement illustrated 
in Figure 4 consists of constant functions. Thus grids that are made up of a fixed number of classes 
of such macroelements will satisfy (3). This does of course mean that on any grid we must 
‘triangulate into the corners’. 

3.  NUMERICAL EXAMPLES 

In this section we shall consider two numerical examples. The first is a simple test problem to 
demonstrate that optimal convergence rates are achieved and the second is an example where the 
P , / P ,  Taylor-Hood element gives poor results but the augmented element gives relatively good 
results. 
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Testing rates of convergence 

Stokes flow) in the unit square with solution 
The first test problem is one proposed by Griffiths.12 It is an enclosed flow problem (namely a 

v, = - 2oXy3, 

vy=5y4 - 5x4, 

p = - 6 0 x 2 ~  + 2oY3 + 5. 

Typical grids for this test problem are illustrated in Figure 5. The solutions (i.e. norms of errors) 
are presented in Table I, with the results compared for the Taylor-Hood element, its augmented 
version and the bubble element (quadratic plus bubble velocities, fully discontinuous  pressure^).^ 
It can be seen that the errors for the two versions of the Taylor-Hood element are comparable and 
both much smaller than the Girault-Raviart bubble element for this problem. Moreover, for all 
three elements the optimal convergence rates are observed. 

Illustrating difJicu1tie.Y with the Taylor-Hood element 

The solution of a non-Newtonian fluid in the volume of revolution of the region illustrated in 
Figure 6, with the VB boundary conditions given in the figure, can be reduced to solving the set of 
equations 

after a number of assumptions have been made, further details of which are given by Tidd.13 The 
V, and V, boundary conditions are homogeneous Dirichlet conditions. For a Newtonian fluid the 

2 x 2 g r i d  4 x 4 g r i d  8 x 8 grid 

Figure 5. Grids for the first test problem 
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Table I. Results for test problem 1 

Errors 

4 x 4  
8 x 8  
16x 16 

Order 
Element 

0-4283 0.4802 0.0 t 669 
0-0975 0.1189 0.00239 
0-0233 0.0296 0.00029 

-2 -2 - 3  

Taylor-Hood 

4 x 4  
8 x 8  
16x 16 

Element 

0.4878 0.4865 0.0 1637 
0.1009 0.1 190 0.00237 
0.0233 0.0296 0.00029 

Augmented Taylor-Hood 

4 x 4  1.5469 0.6834 0.024 16 
8 x 8  0.43 14 0.1797 0.00342 
16x 16 0.1 142 0.0462 000043 

Order -2 - 2  - 3  

Element Quadratic + bubble velocity/discontinuous linear pressure 

L 

Figure 6. The second test problem ( L  = 1 .O, h = 0.1) 

parameter N,=O and for a non-Newtonian fluid this parameter gives a measure of the non- 
Newtonian effects. We note that equation (25b) is independent of V,, Vz ,  p and N ,  and decouples 
from the other three equations, whereas equations (25a), (2%) and (25d) represent a Stokes flow 
problem in (r ,  z )  co-ordinates. This can be solved for the two cases ( N ,  = 1, N ,  = 0) and ( N ,  =0, 
N ,  = 1) and the particular solution required can be obtained by selecting the required ratio of 
these two intermediate solutions. 

The main flow in this problem is a Ve flow with V,  and V, representing secondary flows. 
Indications of the secondary flows for the three cases ( N ,  = 1, N ,  = 0), ( N ,  = 0, N ,  = 1) and ( N ,  = 1, 
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Nn = 1, Ne = 0 

Nn = 0, Ne = 1 

N = 1 ,  N = 1 /9  n e 

Figure 7. Illustrating secondary recirculations (Re  = 10) 

N , =  1/9) are given in Figure 7. The three secondary recirculations of the third case have been 
observed by Hoppmann and Baronet,I4 and it is in attempting to model these three recirculdions 
that we find that the Taylor-Hood element gives a very poor solution even on a highly refined 
grid. A typical grid used is illustrated in Figure 8. The Ve problem, namely equation (25b), was 
solved on each of the grids. On a given grid the relevant V,  numerical solution was used on the 
right-hand side of equation (25a). 

We find that the Taylor-Hood and its augmented version give essentially the same results for 
the case ( N ,  = 1, N ,  = 0) but very different answers for the case ( N ,  = 0, N ,  = l), with the 
augmented version giving far more consistency from one grid to the next. Moreover, for the case 
( N ,  = 1, N ,  = 1/9), where we are expecting to observe three recirculations, the Taylor-Hood 
element gives only one complete recirculation with velocities in almost random directions over 
essentially half the region of the problem, namely 0 I r I O . 5 ,  even on the highly refined 64 x 16 
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Figure 8. A typical grid (16 x 4 )  for the second test problem 

grid. However, the augmented version resolves all three recirculations on a 16 x 4 grid and gives 
very good consistency between the 32 x 8 and 64 x 16 grids. The bubble element performed in a 
similar manner to the augmented Taylor-Hood element, giving somewhat less accurate answers 
for a greater cost.15 We also note that the problem does not fall into the analysis given above. Not 
only is the problem in ( I ,  z )  co-ordinates but also we have not triangulated into all the corners. By 
modifying the grid so that we do  triangulate into all the corners, the solutions obtained do  not 
change in any significant way. 

4. FINAL REMARKS 

In this paper we have analysed and given some examples of the use of supplementing the pressure 
space of Taylor-Hood elements by piecewise constants. This process has the advantage of making 
the element locally mass-conserving. Two examples are given: one illustrates that the expected rate 
of convergence is achieved in practice and the second illustrates a much improved performance 
over the standard Taylor-Hood element. Both these examples illustrate that for these problems 
the augmented Taylor-Hood element outperforms the use of bubble functions. 
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